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1 Introduction

1.1 Background

To further accelerate the realization of the Internet of Ev⁃
erything, 6G mobile networks will integrate a multitude 
of enabling technologies, with a goal of achieving exten⁃
sive coverage, high bandwidth, low latency, and highly 

reliable communications[1]. Currently, the official launch of the 
first 6G standard project by the 3rd Generation Partnership 
Project (3GPP) marks the transition of 6G from technical pre-
research to the standardization phase, signaling the start of a 
critical period for blueprint formulation. However, as an emerg⁃
ing technology, 6G will introduce more complex security chal⁃
lenges[2–3]. The future three-dimensional and fully integrated 
communication network, characterized by diverse, resilient, and 
distributed topologies, involves numerous heterogeneous nodes, 
dynamic resource management, and ubiquitous diverse connec⁃
tions, thereby increasing network complexity and security 
risks[4–5]. While various enabling technologies offer numerous 

potential advantages and application prospects, they also intro⁃
duce certain security problems[6]. For example, attackers can ex⁃
ploit user interference caused by a vast number of antennas and 
devices in ultra-massive multi-input multi-output (UM-MIMO) 
systems to eavesdrop on and tamper with data. To ensure se⁃
cure communication and transmission, threat detection and de⁃
fense, and data confidentiality and integrity in 6G networks, it 
is crucial to redesign security safeguard mechanisms to achieve 
intelligent, flexible, and real-time endogenous security.
1.2 Physical-Layer Authentication

As a complement to traditional upper-layer authentication 
protocols, physical-layer authentication (PLA), with its high 
reliability, lightweight design, and exceptional compatibility, 
is considered an endogenous security protection strategy[7]. Pri⁃
marily, the characteristics of physical-layer attributes, based 
on the inherent randomness of channels and the uniqueness of 
space-time-frequency, which are closely related to communi⁃
cation links, devices, and locations, can represent unique 
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identity signatures for legitimate users, making it extremely 
difficult for attackers to extract, imitate, or forge them[8]. Sec⁃
ondly, PLA cleverly bypasses high-level signaling processes, 
allowing its access points to obtain the channel state informa⁃
tion (CSI) of legitimate users during the channel estimation 
phase, significantly reducing computational resource con⁃
sumption[9]. Furthermore, even if incompatible devices may 
face obstacles in decoding each other’s upper-layer signaling, 
they can still successfully parse the bit stream at the physical-
layer, further broadening the application and flexibility[10].

Recently, a growing number of researchers have designed 
artificial intelligence (AI) -empowered PLA methods to effec⁃
tively address the uncertainty and unknown dynamic chal⁃
lenges in wireless link modeling[11]. Advanced machine learn⁃
ing (ML) algorithms can intelligently learn the distribution 
characteristics of channel fingerprints and optimize the au⁃
thentication threshold in dynamic environments, achieving 
adaptive online authentication[12]. Additionally, unsupervised 
learning algorithms help build a malicious node detection 
model without prior knowledge of the attacker’s location or at⁃
tack frequency[13]. Furthermore, deep learning (DL) technology 
excels at learning high-dimensional fingerprint features and 
classifying a large number of samples, enabling the identifica⁃
tion of large-scale or even ultra-large-scale devices[14]. In sum⁃
mary, compared with traditional PLA methods, AI-empowered 
PLA has several advantages. It overcomes the challenges of 
modeling the uncertainty and unknown dynamics of wireless 
links, achieves adaptive threshold authentication, possesses 
greater universality without needing extensive prior informa⁃
tion, exhibits higher scalability, and is capable of identifying 
ultra-large-scale equipment[15].
1.3 Contributions

The main contributions of this paper are summarized as follows.
1) We review representative AI-based PLA research, which 

is classified into radio frequency (RF) fingerprint extraction, 
fingerprint data augmentation, lightweight authentication mod⁃
els, authentication parameter optimization, multi-attacker 
identification, and physical-layer key generation for 
frequency-division duplexing (FDD) systems.

2) We propose a graph neural network (GNN) -based PLA 
scheme to identify mobile multiusers. Unlike most existing 
convolutional neural network (CNN) -based PLA schemes, the 
proposed scheme can learn the spatial correlation among vari⁃
ous CSI fingerprint dimensions introduced by reconfigurable 
intelligent surfaces (RISs) through modeling the nodes and 
edges. Furthermore, the scheme also captures the temporal 
correlation between fingerprints and within fingerprint se⁃
quences through dynamic graphs and temporal convolution 
learning. The simulations demonstrate the superiority of the 
proposed scheme over six baseline schemes.

3) We envision the future research direction of intelligent 
PLA for 6G, including semantic fingerprint-based PLA, large 
AI model-based PLA, cross-layer PLA, multi-modal signature-
based PLA, distributed autonomous PLA, and PLA for emerg⁃
ing applications.
2 Existing AI-Enabled PLA Approaches

In Table 1, we provide a brief review of existing AI-
empowered PLA schemes, which is explained in detail below.
2.1 RF Fingerprint Extraction

The extraction of RF fingerprints relies on the hardware 
variations of transmitters, such as digital-to-analog converters 
(DAC), in-phase/quadrature (I/Q) modulators, and power am⁃
plifiers. These differences result in distinct inherent proper⁃
ties among radiation sources of the same model and batch. Tra⁃
ditional extraction methods often depend on preprocessing 
techniques, such as time synchronization and phase offset 
compensation, as well as expert feature transformation meth⁃

Table 1. Brief review on existing AI-empowered PLA schemes
Categories

RF fingerprint
extraction

Fingerprint data
augmentation
Lightweight

authentication 
model

Authentication pa⁃
rameter optimiza⁃

tion
Multi-attacker
identification

Physical-layer key 
generation for
FDD systems

Motivations
The extraction of RF fingerprints requires much prior information

Insufficient fingerprint samples lead to overfitting issues of PLA models, thus 
limiting authentication performance

To identify ultra-large-scale devices, PLA models usually have a large number 
of parameters and deep structures

Optimizing detection thresholds is challenging in complex channel environ⁃
ments

The prior information of multi-attackers is difficult to obtain in actual applica⁃
tions

In FDD systems, uplink and downlink transmissions work in different frequen⁃
cy bands, and their channel frequency responses are no longer reciprocal

Methods
CNN[16], RNN[17], attention mecha⁃

nism[18], and CVNN[19]

Added noise-based[20] and generated 
fingerprint-based[21] schemes

Transfer learning-based[22] and net⁃
work compression-based[23] schemes

RL[24–25]

Clustering[13], OCC[26], and GMM[27]

Generative AI[28]

Performance
Realizing end-to-end RF

fingerprint extraction
Enhancing the generalization of PLA 

models
Reducing the deployment complexity 

of PLA models

Achieving the automatic optimization 
of authentication parameters

Realizing authentication without know⁃
ing the prior information of attackers

Improving the key generation ratio

 AI: artificial intelligence
CNN: convolutional neural network
CVNN: complex-valued neural network

FDD: frequency-division duplexing
GMM: Gaussian mixture model
OCC: one class classification

PLA: physical-layer authentication
RL: reinforcement learning
RNN: recurrent neural network
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ods like the short-time Fourier transform and wavelet trans⁃
form. However, these processes require prior information, lim⁃
iting the practical applicability. In recent years, with the ad⁃
vantages of DL in feature extraction, the acquisition of RF fin⁃
gerprints gradually overcomes the dependence on prior infor⁃
mation and manually optimizing parameters, and only requires 
preprocessing processes such as normalization and interpola⁃
tion. DL is realized by neural networks, such as CNN[16], recur⁃
rent neural networks (RNN) [17], attention mechanisms[18], and 
complex-valued neural networks (CVNN)[19].

Specifically, Ref. [16] presents a novel DL-based RF finger⁃
print identification approach to IoT terminal authentication, le⁃
veraging the differential constellation trace figure (DCTF) to 
extract RF fingerprint features without synchronization. CNN 
is designed to identify devices using DCTF features. It offers 
high accuracy, requires no prior information, and maintains low 
complexity. Ref. [17] explores RNNs for autonomous wireless 
system deployments in RF environments. By utilizing the tem⁃
poral properties of received radio signals, Ref. [17] proposes a 
transmitter fingerprinting technique for device identification. 
Ref. [17] implements three RNN models, namely Long Short-
Term Memory (LSTM), the Gated Recurrent Unit (GRU), and 
ConvLSTM, using I/Q time series data collected from eight uni⁃
versal software radio peripheral (USRP) software defined radio 
(SDR) transmitters. By exploiting temporal variations and spa⁃
tial dependencies in the data, the model learns unique feature 
representations for transmitter identification. Ref. [18] presents 
a novel multi-channel attentive feature fusion method for RF 
fingerprinting. Unlike other models that rely on a single repre⁃
sentation of radio signals, the proposed method integrates mul⁃
tiple representations, such as in-phase and quadrature samples, 
carrier frequency offsets, and frequency transform coefficients. 
By employing a shared attention module, Ref. [18] adaptively 
fuses neural features extracted from these different channels, 
optimizing their weights during training. Additionally, a 
convolution-based ResNeXt block is implemented to map the 
fused features to specific device identities. Given that wireless 
signal information is encoded in complex basebands, Ref. [19] 
studies the application of CVNNs to develop device fingerprints 
through supervised learning.
2.2 Fingerprint Data Augmentation

The training of DL-based PLA models usually requires a 
large number of fingerprint samples. However, it is challeng⁃
ing to obtain sufficient fingerprint samples in practical appli⁃
cations. To address this issue, data augmentation is an effec⁃
tive approach to enhancing the model generalization and im⁃
proving the authentication accuracy. We divide the existing 
fingerprint data augmentation schemes into two subcategories: 
added noise-based[20] and generated fingerprint-based[22] 
schemes. The former employs Gaussian noises to mitigate 
model overfitting, while the latter enhances sample richness 
by generating additional fingerprint samples.

Specifically, Ref. [20] aims to enhance authentication per⁃
formance with minimal training data by applying Gaussian 
noises in a smooth latent space, thus improving generalization 
and interpretability. The proposed scheme avoids reliance on 
synthetic samples while providing insights into the authentica⁃
tion process through the defined Fingerprint Library. This al⁃
lows for a better understanding of how input channel impulse 
responses (CIRs) correlate with authentication outcomes. Ref. 
[21] employs three data augmentation algorithms to expedite 
the model establishment and improve authentication success 
rates. By integrating deep neural networks with these augmen⁃
tation methods, the scheme not only enhances performance 
but also accelerates training, even with limited samples.
2.3 Lightweight Authentication Model

To realize the identification of ultra-large-scale devices, au⁃
thentication models typically possess a large number of param⁃
eters and deep structures to learn multi-level and abstract fin⁃
gerprint features. To reduce the computation and storage re⁃
quirements of the PLA model without sacrificing most perfor⁃
mance, researchers have designed transfer learning-based[22] 
and network compression-based[21] PLA schemes. The former 
can quickly identify the physical-layer fingerprints of different 
equipment types in unknown radio environments with only a 
few training samples through a pre-trained model[22]. For ex⁃
ample, Ref. [22] introduces transfer learning to realize swift on⁃
line user authentication, crucial for latency-sensitive applica⁃
tions like edge computing. The latter employs lightweight tech⁃
nologies, such as quantization, grouping convolution, and distil⁃
lation, to reduce the parameters and calculation of PLA models. 
For instance, Ref. [23] introduces network compression tech⁃
niques to reduce the model complexity and size. Despite the 
high model complexity and size of CVNNs, the proposed ap⁃
proach ensures satisfactory identification performance.
2.4 Authentication Parameter Optimization

PLA is typically modeled as a hypothesis testing problem, 
where the authentication result is obtained by comparing the 
difference between the signal to be authenticated and a refer⁃
ence signal with a detection threshold. Therefore, optimizing 
the detection threshold is crucial for authentication perfor⁃
mance. Due to complex multipath effects, time-varying charac⁃
teristics of channels, noise interference, and other factors, de⁃
riving the detection threshold becomes increasingly difficult. 
To address this issue, RL, through continuous interaction with 
the environment, can learn how to make optimal authentica⁃
tion decisions without fully understanding the channel model. 
Ref. [24] frames the interactions between a legitimate receiver 
and spoofers as a zero-sum authentication game. The receiver 
adjusts its test threshold to maximize utility based on the 
Bayesian risk in spoofing detection, while spoofers aim to 
minimize this utility by varying their attack frequencies. Since 
obtaining precise channel parameters beforehand is challeng⁃
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ing, Ref. [24] introduces spoofing detection schemes based on 
Q-learning and Dyna-Q. These schemes leverage RL to deter⁃
mine the optimal test threshold for spoofing detection. Ref. 
[25] presents a novel controller area network (CAN) bus au⁃
thentication framework designed to protect message ex⁃
changes against spoofing attacks. The proposed framework le⁃
verages RL to optimize the selection of authentication modes 
and parameters. By implementing the Dyna architecture with 
the double estimator, the framework enhances authentication 
accuracy without necessitating changes to the CAN bus proto⁃
col or electronic control unit components.
2.5 Multi-Attacker Identification

For detection attack scenarios, a suitable assumption is that 
the attackers’ prior information is unknown, and often multi-
attackers are present to confuse legitimate receivers. To ad⁃
dress this challenge, unsupervised learning can construct an 
authentication model without requiring the attackers’ prior in⁃
formation or training fingerprint set. By establishing decision 
boundaries, the detection of multi-attackers is achieved. Ref. 
[13] proposes a multi-attribute-based approach that considers 
the inherent correlation among physical-layer attributes. To 
manage the exponential computational complexity of corre⁃
lated analysis, Ref. [13] introduces a reconstruction and heu⁃
ristic algorithm to find a suboptimal solution with reduced 
complexity. An unsupervised machine learning-based non-
parametric clustering algorithm is proposed to enhance au⁃
thentication reliability. The proposed approach does not re⁃
quire prior information or a training set, thereby improving its 
universality. Ref. [26] assesses and compares the performance 
of various approaches under different channel conditions. Ref. 
[26] evaluates statistical decision methods and ML classifica⁃
tion techniques, including one-class classifiers for scenarios 
with no forged messages or conventional binary classifiers 
when forged messages are present. Numerical results demon⁃
strate that one-class classification algorithms achieve the low⁃
est missed detection probability under low spatial correlation. 
Ref. [27] utilizes GMMs to identify spoofing attackers by clus⁃
tering messages based on probabilistic models of different 
transmitters. A 2D feature measure space is used to prepro⁃
cess channel information, and a pseudo adversary model is de⁃
veloped to enhance detection performance against spoofers op⁃
erating through unknown channels.
2.6 Physical-Layer Key Generation for FDD Systems

Physical-layer key generation offers a robust and efficient 
method for secure key generation by leveraging the unique 
properties of wireless channels. Exploiting the reciprocity and 
time-varying nature of these channels ensures that both com⁃
municating parties can generate identical keys with minimal 
communication overhead and hardware requirements. The 
implementation of physical-layer key generation relies on the 
reciprocity of channels. However, in FDD systems, the uplink 

(from a user to a base station) and downlink (from a base sta⁃
tion to a user) operate on separate frequency bands. This du⁃
plexing method allows for simultaneous uplink and downlink 
communications, but it also introduces a frequency difference. 
The properties of the wireless channel, such as path loss, shad⁃
owing, and multipath effects, are functions of frequency. Con⁃
sequently, the frequency difference disrupts the channel reci⁃
procity. To address this issue, generative AI is a promising ap⁃
proach. Ref. [28] introduces a novel physical-layer key genera⁃
tion scheme for FDD systems, addressing the challenges of ex⁃
tracting common features in non-reciprocal channels, and em⁃
ploys DL to create a feature mapping function between differ⁃
ent frequency bands, enabling two users to generate highly 
similar channel features. Ref. [28] also proves the existence of 
a band feature mapping function using a feedforward network 
with a single hidden layer and proposes a key generation neu⁃
ral network for reciprocal channel feature construction.
3 Proposed PLA Scheme for Mobile Users

This section provides the GNN-based PLA to identify mo⁃
bile users, including the research motivation, networks and 
channel models, problem formulation, research methods, and 
simulation results.
3.1 Motivation

The accuracy and reliability of CSI fingerprints are crucial 
for PLA. However, their quality is often constrained in some 
scenarios such as the Industrial Internet of Things (IIoT) due 
to multipath fading, obstacle interferences, and complex elec⁃
tromagnetic environments. To tackle this issue, RIS intelli⁃
gently adjusts the wireless propagation environment, signifi⁃
cantly boosting the expected signal power at the receiver[29]. 
Nevertheless, existing CNN-based PLA models frequently 
overlook the potential interdependencies among various CSI 
dimensions. With the integration of RIS, the wireless environ⁃
ment has transformed, resulting in a strong correlation among 
diverse dimensional features of CSI fingerprints. Hence, the 
primary challenge lies in fully extracting the intrinsic features 
of these reconfigurable channel fingerprints.

Furthermore, in certain scenarios, smart devices are frequent 
in motion. For example, mobile terminals in logistics and pro⁃
duction lines augment efficiency and flexibility, while un⁃
manned vehicles and mobile robots engaged in data collection 
and monitoring tasks enhance real-time analysis and decision-
making capabilities. Since CSI is a location-specific physical-
layer attribute, user movement alters the distribution of CSI, 
with greater deviations as the distance from the transmitter in⁃
creases[30]. Consequently, leveraging CSI-based PLA methods to 
identify mobile users poses another significant challenge.

To address the first challenge, we deployed GNNs to cap⁃
ture the dependencies and topological structures among vari⁃
ous CSI dimensions introduced by the RIS. Existing CNN-
based PLA models frequently neglect the underlying depen⁃
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dency relationships among different CSI dimensions. In addi⁃
tion, RNNs have certain limitations in handling sequence 
data, particularly long sequences, which restricts their ability 
to capture long-term dependencies. In contrast, GNNs, 
through the connections of nodes and edges, can naturally cap⁃
ture the correlations among multi-dimensional channel fea⁃
tures. These direct or indirect correlations are transmitted 
through paths between nodes. For example, Ref. [31] models 
MIMO CSI prediction as a multivariate time-series forecasting 
problem and introduces GNNs to exploit both spectral and 
temporal correlations between historical and future CSI.

To tackle the second issue, we formulated the variations of 
CSI fingerprints in mobile scenarios as time series. We then 
integrated temporal convolution networks and dynamic GNNs 
to fully exploit the temporal correlations both among CSI 
samples and within sequences of CSI samples. Unlike static 
GNNs, dynamic GNNs can capture both spatial and temporal 
dependencies among variables and excel at processing multi⁃
variate time series data.
3.2 Network Model

As depicted in Fig. 1, we consider a multiuser access au⁃
thentication scenario, wherein K users engage in communica⁃
tion with the receiver (Bob) across distinct time slots. Given 
that users are in constant motion, the distance between them 
is assumed to exceed half a wavelength, ensuring the unique⁃
ness of their fingerprints. To bolster signal strength and 
broaden coverage, RISs are utilized to redirect the incident 
signal toward the target area by adjusting the reflected signal. 
This enhances the quality of channel fingerprints in areas af⁃
fected by signal blind spots or weak signal reception. Notably, 
RISs are controlled by Bob. Additionally, edge servers sta⁃
tioned at Bob’s location are leveraged to optimize the deploy⁃
ment performance of AI-driven PLA models.

3.3 Channel Model
NT and NR represent the numbers of antennas of each user 

and of Bob, and the received signal at Bob can be denoted as:
YS = QXS + W (1),

where XS with NT-size column denotes the transmitted signal, 
and W~CN (0,σ2 ) with NR-size column denotes Gaussian 
noises. Q = HΨG ∈ CNR × NT represents the hierarchical chan⁃
nel matrix from the user to Bob through RISs, where 
H ∈ CNR × N and G ∈ CN × NT respectively stand for the channel 
matrices from RISs to Bob and from the user to RISs, and Ψ =
diag (ψ0,…,ψN - 1 ) ∈ CN × N represents the response matrix of 
RISs with N denoting the number of elements of RISs. ψn =
An(θn ) ejθn with An(θn ) and ejθn respectively denoting the con⁃
trollable magnitude and phase response of the n-th RIS ele⁃
ment. H and G are modeled as Rician channels, which are de⁃
noted as:
H = PLκH1 + κH

H̄ + PL
1 + κH

H͂ (2),

and
G = PLκG1 + κG

Ḡ + PL
1 + κG

G͂ (3),

where H̄ and Ḡ represent line of sight (LoS) paths, κH and κG 
represent Rician factors, and H͂ and G͂ denote non-LoS (NLoS) 
paths. PL represents the corresponding path loss. The configu⁃
rable fingerprints x are acquired via channel estimation, 
which is not the focus of this paper and can be accomplished 
through various techniques, such as compressed sensing, ma⁃
trix factorization, and DL methods[32].
3.4 Problem Formulation

Due to the multidimensional nature of complex CSI finger⁃
prints in mobile scenarios, these fingerprints can be repre⁃
sented as multivariate time series X = { x1,x2,…,xd } ∈ Rd × l, 
where d = 2NR NT signifies the dimension of CSI fingerprints. 
Each time series component can be denoted as x i =
{ x i,1,x i,2,…,x i,l }, where i = 1, 2,…, d and l ∈ N* denotes the 
length of CSI fingerprint sequences. The authentication prob⁃
lem is formulated as a classification task from { X1,X2,…,Xm } 
to { y1,y2,…,ym }, aiming to predict the identity y of the CSI fin⁃
gerprint sequence X. Here, { y1,y2,…,ym } corresponds to the 
identity labels of the CSI fingerprint sequences 
{ X1,X2,…,Xm } ∈ Rm × d × l, with m denoting the number of CSI 
fingerprint sequences.
3.5 Proposed GNN-Based PLA Scheme

As illustrated in Fig. 2, the proposed PLA scheme includes 
training and authentication stages. Fig. 3 illustrates the de⁃

RIS: reconfigurable intelligent surface
Figure 1. System model of a multiuser access authentication scenario
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tailed training process, including fingerprint acquisition, fin⁃
gerprint preprocessing, graph initialization, temporal convolu⁃
tional networks, dynamic GNN, hierarchical pooling, and au⁃
thentication result output modules.
3.5.1 Fingerprint Acquisition

As described in Section 3.3, the cascade CSI fingerprints 
can be acquired through channel estimation. In this paper, ar⁃
tificial noise is considered to verify the authentication perfor⁃
mance versus different signal-to-noise ratio (SNR) conditions.
3.5.2 Fingerprint Preprocessing

The training CSI dataset is composed of CSI fingerprints 
and corresponding identity labels, which are represented as:

X train = é

ë

ê
êê
ê
ê
ê
   X 11 ,…,X N11

N1

,    X 12 ,…,X N22
N2

,…,    X 1
K ,…,X NK

K
NK

ù

û

ú
úú
ú
ú
ú

(4),

Y train = é

ë

ê
êê
ê
ê
ê
 L1,…,L1

N1

,  L2,…,L2
N2

,…,    LK,…,LK
NK

ù

û

ú
úú
ú
ú
ú

(5),
where Nk denotes the number of CSI sequences of the k-th 

user, k ∈ [1,K ], and Lk represents the corresponding identity 
label encoded by one-hot coding[33].
3.5.3 Graph Initialization

Nodes and edges collectively form the core structure of a 
graph, typically denoted as G = (V, E )[34]. Nodes V, serving as 
the fundamental building blocks of a graph, represent entities 
or objects within the graph, specifically the CSI fingerprint se⁃
quences of users. Edges E play the pivotal role of bridges con⁃
necting nodes, revealing the correlations and interactions 
among them. Edges E can be either directed or undirected, 
and may even be assigned weights to quantify the strength or 
importance of the relationships between nodes V.

The essence of GNNs lies in deeply extracting the representa⁃
tions of nodes and edges. Through continuous learning and up⁃
dating of node features, more enriched and insightful node rep⁃
resentations can be generated. Leveraging the connectivity 
among nodes and the characteristic information of edges, opera⁃
tions such as message passing and graph structure learning are 
conducted, further extracting the global features of the graph.

The relationships between various nodes are represented 
through adjacency matrices, where each node is assigned 
two values representing the source node and the target 
node[35]. Consequently, each time series corresponds to two 
vectors, λ and φ, both with the length of d. The values of λ 
and φ are randomly initialized. The adjacency matrix can 
be expressed as:
A = λT∙φ ( )6 .
Furthermore, we set most of the adjacency matrix’s ele⁃

ments to zero, thereby rendering it sparser and reducing the 
number of elements that need to be computed. Specifically, for 
the adjacency matrix of each time series, only the top k ele⁃
ments with the highest weights are retained, while the other 
values are set to zero.
3.5.4 Temporal Convolutional Network

Temporal convolutional networks focus on capturing the 
temporal dependencies within each dimension of the CSI fin⁃
gerprint by utilizing three CNN layers with different convolu⁃

tional kernels, and applying 
padding operations to ensure 
that the output length matches 
the input CSI fingerprint se⁃
quence[36]. As illustrated in Fig. 
4, in CNNs, neurons deviate 
from the fully connected archi⁃
tecture of traditional neural net⁃
works by adopting a locally con⁃
nected approach. Specifically, 
each neuron establishes a con⁃
nection to a local region of the 
input data, known as the recep⁃

Figure 2. Proposed PLA approach

(a) Training stage

(b) Authentication stage
PLA: physical-layer authentication

Figure 3. Steps of the proposed GNN-based scheme

GNN: graph neural network
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tive field, via a convolution kernel (often implemented as a 
window function). Typically, the depth of the convolution ker⁃
nel aligns with the depth of the input data. Each convolution 
kernel is designed to generate a feature map, meaning that 
multiple convolution kernels collectively yield multiple fea⁃
ture maps, contributing to the depth of the output data.

The learned characteristics of the l-th CNN layer can be de⁃
noted as:
X l = σ (W l*X l - 1 + B l) (7),

where X l serves as both the output from the ( l - 1)-th CNN 
layer and the input to the l-th CNN layer, σ represents the ac⁃
tivation function and * denotes the convolution operation. Ad⁃
ditionally, W l and B l represent the weight and bias matrices, 
respectively, within the l-th CNN layer.
3.5.5 Dynamic GNN

GNNs are broadly classified into static and dynamic graph 
categories. Static graphs are particularly suited for scenarios 
featuring unchanging topological structures, such as user rela⁃
tionship graphs in social networks. Conversely, dynamic 
graphs excel in managing evolving graph structures and attri⁃
butes, akin to traffic networks where vehicle positions vary 
over time[37]. In mobile wireless communication scenarios, 
shifts in user positions result in continuous alterations in the 
distribution of CSI fingerprints. Consequently, dynamic 
graphs are employed to capture the temporal dynamics inher⁃
ent in CSI fingerprint sequences.

As shown in Fig. 5, for all graphs except the first one, an 
identical number of vertices are added to represent the CSI 
fingerprint characteristics of the corresponding vertices from 
the previous time series. Directed edges are assigned between 
vertices from the previous time window v( t - 1,n ) and the current 
time series v( t,n ) to establish associations.
3.5.6 Hierarchical Pooling

By combining graph pooling and temporal processing, this 
module utilizes hierarchical pooling to decrease the number of 
nodes, thereby circumventing the information loss inherent in 

techniques like max pooling and average pooling[38]. As shown 
in Fig. 6, at each hierarchical level, nodes are converged 
through temporal convolutions to extract temporal features, 
and the adjacency matrix is then updated using convolutional 
weights.
3.5.7 Authentication Results

This module averages the values in the feature graph 
through average pooling to obtain a fixed-length vector. This 
vector is then mapped to a logic vector through a fully con⁃
nected layer, and finally, the authentication result is obtained 
through the softmax function.
3.6 Simulation Results and Analysis

3.6.1 Baseline Schemes
We consider six baseline schemes as follows.
• K-nearest neighbor (KNN) [39]: Given a test sample, KNN 

searches for the k nearest fingerprint samples (neighbors) in 
the training dataset. Based on the information of these k neigh⁃
bors, the identity of the test fingerprint sample is predicted.

• Naive Bayes (NB) [40]: NB assumes that the features are 
conditionally independent of each other given the identity la⁃
bel. Based on this assumption and Bayes’ theorem, it calcu⁃
lates the posterior probability of each class for a given sample 
and assigns the sample to the class with the highest posterior 
probability.

Figure 4. Representation of the convolution operation in CNN layers

Neurons

A sliding window

Depth

Figure 5. Dynamic graph

t1 t2 tn…

…

Figure 6. Hierarchical pooling

Original graph Poolinglayer 1 Poolinglayer 2 Poolinglayer 3
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• Gradient boosting decision tree (GBDT)[39]: GBDT itera⁃
tively constructs multiple decision trees and minimizes the 
loss function through gradient descent, thereby gradually im⁃
proving prediction accuracy. Its core idea is to build a 
strong learner using weak learners. In each iteration, GBDT 
adds a new decision tree to the current model to fit the re⁃
siduals between the predictions of the previous model and 
the true values, thereby progressively refining the identity 
predictions.

• Regularized gradient boosting optimization (RGBO) [30]: 
Compared with GBDT, RGBO utilizes a second-order Taylor 
expansion to approximate the changes of the loss function, en⁃
abling it to more accurately estimate the descent direction at 
each iteration, thereby accelerating convergence speed and 
improving prediction accuracy. Additionally, RGBO incorpo⁃
rates a regularization term into the objective function to con⁃
trol the complexity of the model and prevent overfitting.

• Improved gradient boosting optimization (IGBO) [30]: Un⁃
like RGBO, IGBO efficiently processes data, reduces memory 
consumption, and enhances training speed by optimizing the 
sampling process of fingerprints.

• Hybrid method (combining CNNs and RNNs)[41]: CNNs ex⁃
cel at feature extraction from static data, particularly in isolat⁃
ing local features within images. Conversely, RNNs are adept 
at handling the dependencies inherent in time series data, ef⁃
fectively retaining and utilizing past information. Conse⁃
quently, the hybrid method merges these strengths, combining 
CNN’s feature extraction prowess with RNN’s sequence pro⁃
cessing capabilities.
3.6.2 Performance Metric

The authentication performance of the proposed PLA model 
is measured by authentication accuracy as:

AucRate = 1
N ∑

n = 1

N

I ( )Ln = Yn (8),

where N is the number of CSI fingerprint sequences, and Ln and Yn respectively stand for the real and predicted identity la⁃
bels of the n-th CSI fingerprint sequence. If ∙ is true, I (∙) = 1; 
if ∙ is false, I (∙) = 0.

3.6.3 Simulation Parameters
CSI fingerprints are generated through the MATLAB plat⁃

form, and the performance of the proposed scheme is verified 
through Python. The positions of users, RISs, and Bob are pro⁃
vided in Fig. 7, and the detailed parameters are provided in 
Table 2. The number of layers in GNNs typically depends on 
the complexity of the dataset. For a straightforward graph, just 
a few layers may suffice to capture valuable information. How⁃
ever, for intricate graph structures, more layers may be re⁃
quired to extract sophisticated feature representations. Fur⁃
thermore, while increasing the number of layers can enhance 
the model’s expressive power, it may also introduce issues 
such as over-fitting, where node characteristics converge and 
become indistinguishable after multiple layers of propagation, 
thereby impeding the model’s ability to differentiate between 
nodes. Additionally, it may lead to problems like gradient van⁃
ishing or exploding. Consequently, in our simulation, the num⁃
ber of GNN layers is set to 3. The selection of the batch size 
should consider hardware resources, dataset size, and model 
complexity. Therefore, we choose a batch size of 16.
3.6.4 Simulation Results

Fig. 8 analyzes the authentication accuracy versus different 
distances between adjacent users. As the distance between us⁃
ers decreases, the similarity of CSI fingerprints increases, 

RIS: reconfigurable intelligent surface
Figure 7. Positions of users, RISs, and Bob

Table 2. Simulation parameters
Parameters

NT

Number of RIS elements
κH

Bandwidth
Number of each user's CSI fingerprint samples

Length of each CSI fingerprint sequence
Learning rate

Number of GNN layers

Values

4
8×16

3
1 MHz
50 000

50
0.000 1

3

Parameters

NT

Carrier frequency
κG

Speed of users
Number of each user’s CSI fingerprint sequences

Ratio of training fingerprints
Batch size

Ratio of pooling for nodes

Values

3
3.5 GHz

4
2 m/s
1 000

0.6
16
0.2

CSI: channel state information     GNN: graph neural network     RIS: reconfigurable intelligent surface

Z/m

Bob(5, 0, 25)

H

(0, 80, 30)
RIS

G
Y/m

User 1(10, 80, 0)
X/m

The distance betweentwo adjacaent users is 2 mMobile direction

User 6(10, 90, 0)
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leading to a higher degree of overlap in their fingerprint distri⁃
butions. Consequently, it becomes more challenging for the 
PLA model to distinguish between them, resulting in lower au⁃
thentication accuracy. However, the proposed PLA scheme 
consistently outperforms the benchmark models.

Fig. 9 depicts the authentication accuracy versus different 
SNRs. The authentication accuracy of baseline schemes im⁃
proves gradually with higher SNRs. Regardless of SNR levels, 
the proposed scheme consistently outperforms these baselines, 
demonstrating superior robustness. This superiority stems 

from its consideration of the variations in CSI fingerprint dis⁃
tribution caused by user movements, whereas the other meth⁃
ods presume an independent and identical distribution of CSI 
fingerprints for each user.
4 Future Research Directions

This section gives challenges and the future research direc⁃
tion of AI-driven PLA, including semantic fingerprint-based 
PLA, large AI model-based PLA, cross-layer PLA, multimodal 
signature-based PLA, distributed autonomous PLA, and PLA 
for emerging applications.
4.1 Semantic Fingerprint-Based PLA

Unlike traditional syntax-based communication paradigms 
that focus on indiscriminate transmission of bit data, semantic 
communications ensure an accurate understanding of the com⁃
munication intent of source information at both the transmitting 
and receiving ends through the representation and measure⁃
ment of semantic information, on-demand compression, and effi⁃
cient and robust transmission. Inspired by semantic communi⁃
cations, we can extract knowledge of environmental semantic 
features from the channel propagation environment. By doing 
so, the physical channel can be abstracted as a semantic chan⁃
nel to assist in guiding the acquisition and optimization of chan⁃
nel fingerprints. Ref. [42] proposes an environmental semantics-
enabled PLA method, which extracts frequency-independent 
wireless channel fingerprints from CSI in massive MIMO sys⁃
tems based on environmental semantic knowledge. The pro⁃
posed method can effectively detect physical-layer spoofing at⁃
tacks and is robust in time-varying wireless environments. In 
the future, constructing a knowledge base of semantic channel 
fingerprints and a semantic channel knowledge map can further 
enhance the efficiency and accuracy of PLA.
4.2 Large AI Model-Based PLA

In recent years, research on large models has been in full 
swing, and they offer the following advantages. 1) Large mod⁃
els possess more parameters, enabling them to learn more 
complex data patterns and thus perform better on various 
tasks. 2) The knowledge learned by large models during train⁃
ing is more generalizable, allowing for better generalization to 
unseen data and reducing the need for extensive labeled data. 
3) With ongoing advancements in computing resources, the 
cost of training and deploying large models has gradually de⁃
creased. In the future, for multiuser authentication needs, 
high-robustness authentication requirements in complex envi⁃
ronments, and lightweight authentication needs, PLA empow⁃
ered by large models will exhibit exceptional performance.
4.3 Cross-Layer PLA

The training of PLA models based on AI requires the guid⁃
ance of prior knowledge of legitimate fingerprints, which origi⁃
nates from identity labeling by upper-layer authentication 
mechanisms. Therefore, PLA is a type of cross-layer authenti⁃

GBDT: gradient boosting decision treeIGBO: improved gradient boosting optimizationKNN: K-nearest neighbor
RGBO: regularized gradient boost⁃ing optimizationSNR: signal-to-noise ratio
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cation technology, and its complexity is influenced by the in⁃
teraction efficiency between the upper layer and the physical 
layer. Ref. [43] deploys active learning to select optimal unla⁃
beled fingerprints and queries the identity from the upper-
layer authentication protocol. The proposed method can effec⁃
tively reduce the interaction requirements between the upper-
layer and the physical-layer, achieving efficient utilization of 
prior fingerprint information. In the future, optimizing the fin⁃
gerprint selection algorithm could further reduce the authenti⁃
cation error rate while maintaining lightweight performance.
4.4 Multimodal Signature-Based PLA

By integrating technologies such as wireless communica⁃
tions, radio sensing, and even AI, integrated sensing and com⁃
munication (ISAC) can achieve the goals of spectrum conser⁃
vation, cost reduction, and mutual enhancement between com⁃
munication and sensing. Ref. [44] introduces the concept of 
synesthesia of machines and establishes a platform for generat⁃
ing and collecting communication and multimodal sensing in⁃
formation. This platform can provide multimodal data under 
diverse scenarios (urban, suburban, and rural) and various 
conditions (different weather, times of day, traffic densities, 
frequency bands, and antenna arrays). In the future, by design⁃
ing multimodal fusion algorithms that integrate channel finger⁃
prints, RF sensing data (millimeter-wave radar point clouds), 
and non-RF sensing data (RGB images, depth maps, and Li⁃
DAR point clouds), highly reliable identity authentication in 
dynamic and complex environments can be achieved.
4.5 Distributed Autonomous PLA

With the advancement in cloud computing and edge intelli⁃
gence, the cloud-edge-end collaborative architecture can opti⁃
mize resource utilization in a distributed manner and enhance 
data security. Ref. [45] proposes a privacy-preserving collab⁃
orative authentication scheme that provides reliable and effi⁃
cient security, improved robustness in dynamic or untrusted 
environments, and stronger defensive capabilities compared 
with traditional centralized authentication methods. Future re⁃
search includes cross-domain distributed PLA systems to en⁃
sure seamless switching and access for users or devices across 
different domains.
4.6 PLA for Emerging Applications

Future 6G networks will expand the boundaries of commu⁃
nication technology and transform the way we live and work. 
6G will support emerging application scenarios, such as inte⁃
grated space-air-ground-sea networks for ubiquitous coverage. 
Ref. [46] considers the identity security of satellite transmit⁃
ters and provides a PLA scheme for low-earth orbit satellites. 
Ref. [47] provides a PLA approach for complicated time-
varying underwater acoustic channels. Future research in⁃
cludes optimizing fingerprint feature extraction algorithms, de⁃
veloping anti-interference PLA technologies, and assessing in⁃
dustrial feasibility.

5 Conclusions
As the next generation of mobile communication technol⁃

ogy, 6G stands as a pinnacle of global technological advance⁃
ment and plays a pivotal role in driving future industrial devel⁃
opment. As the latest iteration of information infrastructure, 
the security of 6G directly relates to the safe operation of na⁃
tional critical infrastructures. Currently, authentication mecha⁃
nisms in wireless communications primarily rely on 
cryptography-based algorithms, and these “add-on” and 

“patchwork” authentication mechanisms face challenges in 
terms of security protection levels, computational power re⁃
quirements, and compatibility. As an endogenous security ap⁃
proach, AI-based PLA boasts strong security assurance, intel⁃
ligence, efficiency, and strong scalability. This paper first re⁃
views representative AI-enabled PLA schemes, categorizing 
them into RF fingerprint extraction, fingerprint data augmenta⁃
tion, lightweight authentication models, authentication param⁃
eter optimization, multi-attacker identification, and physical-
layer key generation for FDD systems. Furthermore, this paper 
proposes a GNN-based solution to identifing mobile multius⁃
ers and compares its performance with six baseline schemes to 
verify its superiority. Finally, this paper outlines future re⁃
search directions, providing new insights for researchers in re⁃
lated fields.

References
[1] CHAFII M, BARIAH L, MUHAIDAT S, et al. Twelve scientific challenges 

for 6G: rethinking the foundations of communications theory [J]. IEEE 
communications surveys and tutorials, 2023, 25(2): 868 – 904. DOI: 
10.1109/COMST.2023.3243918

[2] NGUYEN V L, LIN P C, CHENG B C, et al. Security and privacy for 6G: a 
survey on prospective technologies and challenges [J]. IEEE communica⁃
tions surveys and tutorials, 2021, 23(4): 2384 – 2428. DOI: 10.1109/
COMST.2021.3108618

[3] GUO H Z, LI J Y, LIU J J, et al. A survey on space-air-ground-sea inte⁃
grated network security in 6G [J]. IEEE communications surveys and tuto⁃
rials, 2022, 24(1): 53–87. DOI: 10.1109/COMST.2021.3131332

[4] WANG C X, YOU X H, GAO X Q, et al. On the road to 6G: visions, re⁃
quirements, key technologies, and testbeds [J]. IEEE communications sur⁃
veys and tutorials, 2023, 25(2): 905 – 974. DOI: 10.1109/
COMST.2023.3249835

[5] PORAMBAGE P, GÜR G, OSORIO D P M, et al. The roadmap to 6G secu⁃
rity and privacy [J]. IEEE open journal of the communications society, 
2021, 2: 1094–1122. DOI: 10.1109/OJCOMS.2021.3078081

[6] CHORTI A, BARRETO A N, KÖPSELL S, et al. Context-aware security 
for 6G wireless: the role of physical layer security [J]. IEEE communica⁃
tions standards magazine, 2022, 6(1): 102 – 108. DOI: 10.1109/
MCOMSTD.0001.2000082

[7] LI D M, YANG X, ZHOU F H, et al. Blind physical-layer authentication 
based on composite radio sample characteristics [J]. IEEE transactions on 
communications, 2022, 70(10): 6790 – 6803. DOI: 10.1109/
TCOMM.2022.3200599

[8] WANG X B, HAO P, HANZO L. Physical-layer authentication for wireless 
security enhancement: current challenges and future developments [J]. 
IEEE communications magazine, 2016, 54(6): 152– 158. DOI: 10.1109/
MCOM.2016.7498103

27



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

MENG Rui, FAN Dayu, XU Xiaodong, LYU Suyu, TAO Xiaofeng 

Special Topic   Endogenous Security Through AI-Driven Physical-Layer Authentication for Future 6G Networks

[9] XIE N, TAN H J, HUANG L, et al. Physical-layer authentication in wire⁃
lessly powered communication networks [J]. IEEE/ACM transactions on 
networking, 2021, 29(4): 1827–1840. DOI: 10.1109/TNET.2021.3071670

[10] HAN S F, XIE T, I C L. Greener physical layer technologies for 6G mobile 
communications [J]. IEEE communications magazine, 2021, 59(4): 68 –
74. DOI: 10.1109/MCOM.001.2000484

[11] FANG H, WANG X B, TOMASIN S. Machine learning for intelligent au⁃
thentication in 5G and beyond wireless networks [J]. IEEE wireless com⁃
munications, 2019, 26(5): 55–61. DOI: 10.1109/MWC.001.1900054

[12] FANG H, QI A, WANG X B. Fast authentication and progressive authori⁃
zation in large-scale IoT: how to leverage AI for security enhancement [J]. 
IEEE network, 2020, 34(3): 24–29. DOI: 10.1109/MNET.011.1900276

[13] XIA S D, TAO X F, LI N, et al. Multiple correlated attributes based 
physical layer authentication in wireless networks [J]. IEEE transactions 
on vehicular technology, 2021, 70(2): 1673 – 1687. DOI: 10.1109/
TVT.2021.3055563

[14] JIAN T, RENDON B C, OJUBA E, et al. Deep learning for RF finger⁃
printing: a massive experimental study [J]. IEEE Internet of Things maga⁃
zine, 2020, 3(1): 50–57. DOI: 10.1109/IOTM.0001.1900065

[15] MENG R, XU B X, XU X D, et al. A survey of machine learning-based 
physical-layer authentication in wireless communications [J]. Journal of 
network and computer applications, 2025, 235: 104085. DOI: 10.1016/j.
jnca.2024.104085

[16] PENG L N, ZHANG J Q, LIU M, et al. Deep learning based RF finger⁃
print identification using differential constellation trace figure [J]. IEEE 
transactions on vehicular technology, 2020, 69(1): 1091 – 1095. DOI: 
10.1109/TVT.2019.2950670

[17] ROY D, MUKHERJEE T, CHATTERJEE M, et al. RF transmitter finger⁃
printing exploiting spatio-temporal properties in raw signal data [C]//Pro⁃
ceedings of 18th IEEE International Conference on Machine Learning 
and Applications (ICMLA). IEEE, 2019: 89 – 96. DOI: 10.1109/ic⁃
mla.2019.00023

[18] ZENG Y, GONG Y, LIU J W, et al. Multi-channel attentive feature fusion 
for radio frequency fingerprinting [J]. IEEE transactions on wireless com⁃
munications, 2024, 23(5): 4243 – 4254. DOI: 10.1109/
TWC.2023.3316286

[19] GOPALAKRISHNAN S, CEKIC M, MADHOW U. Robust wireless fin⁃
gerprinting via complex-valued neural networks [C]//Proceedings of IEEE 
Global Communications Conference (GLOBECOM). IEEE, 2019: 1– 6. 
DOI: 10.1109/globecom38437.2019.9013154

[20] MENG R, XU X D, SUN H, et al. Multiuser physical-layer authentication 
based on latent perturbed neural networks for industrial Internet of 
Things [J]. IEEE Internet of Things journal, 2023, 10(1): 637–652. DOI: 
10.1109/JIOT.2022.3203514

[21] LIAO R F, WEN H, CHEN S L, et al. Multiuser physical layer authenti⁃
cation in Internet of Things with data augmentation [J]. IEEE Internet of 
Things journal, 2020, 7(3): 2077 – 2088. DOI: 10.1109/
JIOT.2019.2960099

[22] CHEN Y, HO P H, WEN H, et al. On physical-layer authentication via 
online transfer learning [J]. IEEE Internet of Things journal, 2022, 9(2): 
1374–1385. DOI: 10.1109/JIOT.2021.3086581

[23] WANG Y, GUI G, GACANIN H, et al. An efficient specific emitter iden⁃
tification method based on complex-valued neural networks and network 
compression [J]. IEEE journal on selected areas in communications, 
2021, 39(8): 2305–2317. DOI: 10.1109/JSAC.2021.3087243

[24] XIAO L, LI Y, HAN G A, et al. PHY-layer spoofing detection with rein⁃
forcement learning in wireless networks [J]. IEEE transactions on vehicu⁃
lar technology, 2016, 65(12): 10037 – 10047. DOI: 10.1109/
TVT.2016.2524258

[25] XIAO L, LU X Z, XU T W, et al. Reinforcement learning-based physical-
layer authentication for controller area networks [J]. IEEE transactions on 
information forensics and security, 2021, 16: 2535–2547. DOI: 10.1109/
TIFS.2021.3056206

[26] SENIGAGLIESI L, BALDI M, GAMBI E. Comparison of statistical and 

machine learning techniques for physical layer authentication [J]. IEEE 
transactions on information forensics and security, 2020, 16: 1506 –
1521. DOI: 10.1109/TIFS.2020.3033454

[27] QIU X Y, JIANG T, WU S, et al. Physical layer authentication enhance⁃
ment using a Gaussian mixture model [J]. IEEE access, 2018, 6: 53583–
53592. DOI: 10.1109/ACCESS.2018.2871514

[28] ZHANG X W, LI G Y, ZHANG J Q, et al. Deep-learning-based physical-
layer secret key generation for FDD systems [J]. IEEE Internet of Things 
journal, 2022, 9(8): 6081–6094. DOI: 10.1109/JIOT.2021.3109272

[29] JIN L, XU X D, HAN S J, et al. RIS-assisted physical layer key genera⁃
tion and transmit power minimization [C]//Proceedings of IEEE Wire⁃
less Communications and Networking Conference (WCNC). IEEE, 
2022: 2065–2070. DOI: 10.1109/WCNC51071.2022.9771815

[30] MENG R, XU X D, ZHAO H Y, et al. Multi-observation multi-channel-
attribute-based multi-user authentication for industrial wireless edge 
networks [J]. IEEE transactions on industrial informatics, 2024, 20(2): 
2097–2108. DOI: 10.1109/TII.2023.3286885

[31] MOURYA S, REDDY P, AMURU S, et al. Spectral temporal graph neu⁃
ral network for massive MIMO CSI prediction [J]. IEEE wireless commu⁃
nications letters, 2024, 13(5): 1399 – 1403. DOI: 10.1109/
LWC.2024.3372148

[32] ZHENG B X, YOU C S, MEI W D, et al. A survey on channel estimation 
and practical passive beamforming design for intelligent reflecting sur⁃
face aided wireless communications [J]. IEEE communications surveys & 
tutorials, 2022, 24(2): 1035–1071. DOI: 10.1109/COMST.2022.3155305

[33] RODRÍGUEZ P, BAUTISTA M A, GONZÀLEZ J, et al. Beyond one-hot 
encoding: lower dimensional target embedding [J]. Image and vision com⁃
puting, 2018, 75: 21–31. DOI: 10.1016/j.imavis.2018.04.004

[34] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph 
neural networks [J]. IEEE transactions on neural networks and learning 
systems, 2021, 32(1): 4–24. DOI: 10.1109/TNNLS.2020.2978386

[35] ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: a review of 
methods and applications [J]. AI open, 2020, 1: 57–81. DOI: 10.1016/j.
aiopen.2021.01.001

[36] LEA C, FLYNN M D, VIDAL R, et al. Temporal convolutional networks 
for action segmentation and detection [C]//Proceedings of IEEE Confer⁃
ence on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 
1003–1012. DOI: 10.1109/CVPR.2017.113

[37] SKARDING J, GABRYS B, MUSIAL K. Foundations and modeling of dy⁃
namic networks using dynamic graph neural networks: a survey [J]. IEEE 
access, 2021, 9: 79143–79168. DOI: 10.1109/ACCESS.2021.3082932

[38] LIU H Y, YANG D H, LIU X Z, et al. TodyNet: temporal dynamic graph 
neural network for multivariate time series classification [J]. Information 
sciences, 2024, 677: 120914. DOI: 10.1016/j.ins.2024.120914

[39] PAN F, PANG Z B, WEN H, et al. Threshold-free physical layer authenti⁃
cation based on machine learning for industrial wireless CPS [J]. IEEE 
transactions on industrial informatics, 2019, 15(12): 6481–6491. DOI: 
10.1109/TII.2019.2925418

[40] WEBB G I. Naive bayes [M]//Encyclopedia of machine learning. Boston, 
USA: Springer, 2011: 713–714. DOI: 10.1007/978-0-387-30164-8_576

[41] ALZAHRANI S, ALDERAAN J, ALATAWI D, et al. Continuous mobile 
user authentication using a hybrid CNN-Bi-LSTM approach [J]. Comput⁃
ers, materials & continua, 2023, 75(1): 651 – 667. DOI: 10.32604/
cmc.2023.035173

[42] GAO N, HUANG Q Y, LI C, et al. EsaNet: environment semantics en⁃
abled physical layer authentication [J]. IEEE wireless communications 
letters, 2024, 13(1): 178–182. DOI: 10.1109/LWC.2023.3324981

[43] MENG R, ZHU F Z, XU X D, et al. Efficient Gaussian process 
classification-based physical-layer authentication with configurable fin⁃
gerprints for 6G-enabled IoT [EB/OL]. [2024-11-10]. https://arxiv.org/abs/
2307.12263v2

[44] CHENG X, HUANG Z W, BAI L, et al. M3SC: a generic dataset for mixed 
multi-modal (MMM) sensing and communication integration [J]. China 
communications, 2023, 20(11): 13 – 29. DOI: 10.23919/JCC. fa. 2023-

28



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

MENG Rui, FAN Dayu, XU Xiaodong, LYU Suyu, TAO Xiaofeng 

Endogenous Security Through AI-Driven Physical-Layer Authentication for Future 6G Networks   Special Topic

0268.202311
[45] FANG H, WANG X B, XIAO Z L, et al. Autonomous collaborative au⁃

thentication with privacy preservation in 6G: from homogeneity to hetero⁃
geneity [J]. IEEE network, 2022, 36(6): 28 – 36. DOI: 10.1109/
MNET.002.2100312

[46] OLIGERI G, SCIANCALEPORE S, RAPONI S, et al. PAST-AI: physical-
layer authentication of satellite transmitters via deep learning [J]. IEEE 
transactions on information forensics and security, 2022, 18: 274–289. 
DOI: 10.1109/TIFS.2022.3219287

[47] ZHAO R Q, SHI T, LIU C Y, et al. Physical layer authentication without 
adversary training data in resource-constrained underwater acoustic net⁃
works [J]. IEEE sensors journal, 2023, 23(22): 28270 – 28281. DOI: 
10.1109/JSEN.2023.3321777

Biographies
MENG Rui received his BS degree in information engineering and PhD degree 
in information and communication engineering both from Beijing University of 
Posts and Telecommunications (BUPT), China in 2018 and 2024, respectively. 
He is currently a postdoctoral fellow with BUPT. His research interests cover 
next-generation networks, physical layer authentication, identity security, se⁃
mantic security, deep learning, and Internet of Things.

FAN Dayu received his BS degree in information engineering from Beijing Uni⁃
versity of Posts and Telecommunications (BUPT), China in 2024, where he is cur⁃
rently pursuing his master’s degree in communication engineering. His research 
interests cover wireless security, semantic communication, and deep learning.

XU Xiaodong (xuxiaodong@bupt. edu. cn) received his BS degree in informa⁃
tion and communication engineering and master’s degree in communication 
and information system both from Shandong University, China in 2001 and 
2004, respectively. He received his PhD degree in circuit and system from Bei⁃
jing University of Posts and Telecommunications (BUPT), China in 2007. He is 
currently a professor of BUPT, a research fellow of the Department of Broad⁃
band Communication of Peng Cheng Laboratory and a member of IMT-2030 
(6G) Experts Panel. He has coauthored nine books/chapters and more than 120 
journal and conference papers. He is also the inventor or co-inventor of 51 
granted patents. His research interests cover semantic communications, intelli⁃
cise communication systems, moving networks, and mobile edge computing and 
caching.

LYU Suyu received her bachelor’s degree and PhD degree in information and 
communication engineering from Beijing University of Posts and Telecommuni⁃
cations, China in 2018 and 2024, respectively. From November 2022 to Septem⁃
ber 2023, she was a visiting student with the School of Electronic Engineering 
and Computer Science, Queen Mary University of London, UK. She is currently 
a post-doctoral researcher at Beijing University of Technology, China. Her main 
research interests include ultra-reliable low-latency communications, reconfigu⁃
rable intelligent surface, and non-orthogonal multiple access.

TAO Xiaofeng received his BS degree in electrical engineering from Xi’an Ji⁃
aotong University, China in 1993, and MS and PhD degrees in telecommunica⁃
tion engineering from Beijing University of Posts and Telecommunications 
(BUPT), China, in 1999 and 2002, respectively. He is a professor at BUPT, a 
fellow of the IET, and Chair of the IEEE ComSoc Beijing Chapter. He has au⁃
thored or co-authored over 200 papers and three books in wireless communica⁃
tion areas. He focuses on 5G/B5G research.

29


